How to see the invisible infrared world using your mobile phone camera

April 4th, 2010

Using your mobile phone, you can see infrared radiation – a normally invisible part of the electromagnetic spectrum. Ken’s Tech Tips looks at some of the physics of electromagnetic waves and explains how you can see this invisible world – and you don’t need anything more than the mobile phone in your pocket.

What is infrared radiation?

Infrared is a form of electromagnetic radiation. Other forms of electromagnetic  radiation (EM radiation) include visible light, x-rays, microwaves (the EM waves that wi-fi networks use and also the waves that cook your food in microwave ovens) and radio waves. The difference between all these different forms of radiation are the wavelength of the EM wave. We can illustrate this electromagnetic spectrum (CC-licensed image from Wikipedia):

What is the difference between visible light and infrared?

Visible light and infrared are both forms of electromagnetic radiation but with different wavelengths. Visible light has a wavelength of between 400nm and 700nm (a nanometer is so small that we can fit 100,000,000 in just 1 meter). We can only “see” the EM radiation in this range. At 700nm and longer, we enter the realm of infrared radiation.

Why can mobile phone cameras “see” infrared?

golden waterfall
Creative Commons License photo: paul (dex) busy @ work

Most cameras are designed to capture an image of what people can see. Hence a good camera would only detect EM radiation in the visible light spectrum (between 400nm and 700nm).

Yet the charged couple devices used within cameras are typically manufactured to pick up EM radiation between 350nm and 1000nm. This means they are capable of detecting infrared light too (between 700nm and 1,000nm is infrared).

To improve image quality, camera manufacturers typically add films and filters to block out infrared light and ensure only visible light reaches the CCD. If the infrared radiation was recorded by the camera and appeared in our photos, the photos would not be an accurate representation of what we can see – i.e. what we want to photograph!

Mobile phone cameras tend to be produced a lot cheaper than proper digital cameras and hence the vast majority of mobile phone cameras have a much thinner film/filter to block out infrared light. The lack of infrared filter is one reason photographs taken on mobile phones don’t look as good as those taken on proper digital cameras but it also provides us with an opportunity to use our mobiles to “see” in infrared.

How can I harness this fact?

Simply point your mobile phone camera towards a infrared light source and you can begin to see this new invisible infrared world!

For example, stick your phone camera in front of a television remote control and start pressing some buttons: you’ll see a few flashes of light (your remote uses invisible IR radiation to communicate with your TV – you wouldn’t normally be able to see this radiation as our eyes are not sensitive to the infrared wavelengths used by the remote). If you’ve got a Nintendo Wii, point your phone camera at the sensor bar. You’ll notice the sensor bar emits invisible IR radiation (this is how the Wiimotes track your movement).

Unfortunately, you won’t see the world in true infrared. Your mobile phone camera is sensitive to visible light too – and fortunately (although unfortunately in our case) this always registers much brighter on the CCD and drowns out the infrared image. If you’re really serious about seeing the world in infrared, you can pick up an infrared filter from Amazon. These filters will block out visible light and hence allow you to get a better image of the invisible infrared world.

Like this tip? Get the most from your mobile phone...

  • Discover brand new ways to use your mobile phone
  • Techniques to get more out of your mobile phone for less
  • Be the first to learn about new mobile technology

Enter your email to receive free regular Ken's Tech Tips:

About Ken

Ken Lo

My passion is helping people to get the most out of their mobile phone. I've been blogging at Ken's Tech Tips since 2005.

Aside from writing about mobile technology, my interests are in software development, digital marketing and physics. Outside of the blog, I work with numerous technology companies helping them to explain their product and helping them to market it to consumers. Please get in touch for more information.

Your Comments

We'd love to hear your thoughts and any questions you may have. So far, we've received 5 comments from readers. You can add your own comment here.

  1. john morris said:

    Hi Ken Great article. Can you please help me with a couple related questions?
    Generally, my goal is to try to perform useful spectroscopy without a spectrometer attachment.
    Instead, I am hoping to identify small spectral fingerprints in the standard data captured by smartphone cameras and then reconstruct that data into useful spectral identification. So my questions are:
    1. How can I find out what wavelengths are captured (and not filtered out) in the iphone 7 and android?
    2. Do RAW images (which I can now use thanks to IOS10) capture more wavelengths than processed JPEGs? Any idea which new wavelengths are captured?
    3. If some wavelengths are being filtered out , can I turn off that filtering (e.g. Iphone selfie facing cameras don’t seem to filter out near IR)
    4. Generally, is there any way to reconstruct useful spectral information/data from RGB values or spectral information found in a RAW image? Any guidance you could provide would be sooooooo appreciated.
    Thank you John

    1. Ken Lo
      Ken replied:

      Hi John,
      Thanks for your comment and some very good questions! Unfortunately, I’m not really sure the answer to any of them, so very sorry about this! You might be best off asking this on a photography forum (alternatively, see if you can contact Sony Semiconductor who manufacture the camera sensor on the iPhone).

  2. gordon said:

    Use the black panel from an old TV remote or you can buy an offcut of black IR pass Plexiglas from any plastics supplier. This filter in front of your phone will let you see… nothing… unless there is a lot of IR light around from natural sunlight or halogen (NOT LED) light bulbs or an IR illuminator such as a security light.

  3. Peter said:

    Hi There,

    A useful visible light filter, that is, one which blocks visible light but permits IR light, can be home made from (still) commonly available materials.

    Some black material are in fact clear to IR but you can only tell this by experimenting with a camera and and infrared remote control. Coke, for example looks like clear water on IR photos.

    I understand the dark material used to make floppy disks (the actual disks, not their casings) permits IR, so maybe start there.

    Peter Ripley

  4. Peter Taft said:

    I need to up nm on the Cokin UV filter and maximum is 720nm. What can you suggest?

Leave a Reply

E-Mail Notifications: By default, I'll drop you an e-mail when there's a reply to your comment. If you don't want to receive such a notification, please select the "Don't Subscribe" option from the dropdown menu above.